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The presence and behaviour of vaporous cavities are of major importance in many 
modern industrial applications where heat transfer, boiling or cavitation are involved. 
Following a sudden depressurization of a superheated fluid, the bubble growth rate 
controls the generated transients and heat transfer. Most existing computer modelling 
and prediction codes are based on individual spherical-bubble-growth studies and 
neglect possible interactions and collective phenomena. This paper addresses this 
collective behaviour using a singular-perturbation approach. The method of matched 
asymptotic expansions is used to describe the bubble growth, taking into account its 
interaction with a finite number of surrounding bubbles. A computer program is 
developed and the influence of the various parameters is studied numerically for the 
particular case of a symmetrical equal-size-bubble configuration and a thermal- 
boundary-layer approximation. A significant influence of these interactions on bubble 
growth and heat transfer is observed: compared to an isolated-bubble case, the growth 
rate of a bubble is reduced in the presence of other bubbles, and the temperature drop 
at its wall is smaller. As a result the heat loss due to bubble growth is smaller. These 
effects increase with the number of interacting bubbles. 

1. Introduction 
The presence and behaviour of vaporous cavities are of great importance in many 

modern industrial applications where heat transfer, boiling, or cavitation are 
involved. For instance, the rate of heat transfer in nucleate boiling depends 
essentially on the ability of the heat-transfer surface to nucleate and support the 
growth of vapour bubbles. The conduction of heat in the liquid is greatly affected 
by the absorption and release of latent heat during the phase transition at the 
bubble-liquid interfaces. Wave propagation in the medium is also significantly 
affected by bubble behaviour and volume changes. Consequently, the study of the 
bubble dynamics and of the two-phase medium constituted by the host liquid and 
bubbles of its own vapour is fundamental in the design, analysis, and application of 
various engineering systems. 

Many modern processes deal with various fluids in conditions where both heat- 
transfer effects and inertia contribute in controlling the bubble behaviour . Examples 
of such fluids are hydrocarbons, liquid metals, cryogenic fluids, and demineralized 
hot water at temperatures as high as 300 "C. Heat transfer, boiling or cavitation 
appears with these liquids in such applications as high-speed flows of sodium-cooled 
fast-breeder reactors in nuclear-power engineering, circulation of cryogenic liquid 
in pumps in aerospace engineering, and flow of hot water in nozzles and tubes in 
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steam-power plants. Accidents, such as loss of vacuum insulation in cryogenic 
storage tanks and loss of coolant in nuclear-power plants, are sources of boiling 
nucleation and are of major safety concern (Plesset 1980). 

The problem of the growth of an isolated spherical bubble in an unbounded fluid 
has been extensively studied both for cavitation problems and for heat-transfer 
boiling problems (see the review by Prosperetti & Plesset 1978). However, non- 
spherical-bubble dynamics as well as the interaction between bubbles have been given 
much less attention owing to the complexity of the non-spherical free-boundary-value 
problem. Even though i t  is recognized that bubbles in a boiling liquid are seldom 
spherical and isolated, very few studies of the subject have been made. On the other 
hand, many experimental and theoretical investigations exist for non-spherical- 
cavitation-bubble collapse (Hammitt 1980 ; Plesset & Prosperetti 1977 ; Chahine 
1981b) and a few studies have been recently published on the inertia-controlled 
collapse of a multibubble system or a bubble cloud (Morch 1981 ; Chahine 1981 a, 
1982). 

In  previous work, we investigated analytically and numerically the collapse of a 
bubble cloud due to an increase in the ambient pressure, neglecting heat transfer 
(Chahine 1981 a, 1982). A cumulative effect was shown, leading to pressures generated 
during the collapse significantly larger than would be computed by adding the effects 
of individual bubbles. This explained the observations of bent trailing edges of 
propellers subjected to cloud cavitation. In the work described in this paper, we 
extend the singular-perturbation approach earlier developed to the study of cases 
where heat-transfer effects cannot be neglected. We then investigate numerically the 
growth of a bubble cloud in a superheated fluid following a sudden depressurization. 
Both a general approach and a thermal-boundary-layer approximation are studied 
analytically, and methods of numerical solution are described. Numerical computa- 
tions are then conducted only for the case of a symmetrical bubble-cloud configuration 
with the boundary -layer approximation and when deviations from sphericity are 
moderate. 

2. Analytical model 
2.1. Formulation of the problem 

As a first step in studying the general problem of a bubble cloud in a flow field and 
near solid boundaries, let us consider a cloud of bubbles in an unbounded medium 
of uniform pressure P, and temperature T,. This corresponds to the case where the 
size of the cloud is small compared to the flow-field characteristic lengthscale. P, and 
T, are then the local values of the pressure and the temperature in the flow field in 
the absence of the cloud. We further assume the liquid to be inviscid and incompressible 
and the flow irrotational. These assumptions are commonly accepted and are justified 
in cavitation and boiling heat-transfer studies except in the last phases of the bubble 
collapse. The neglect of the finite sound-speed effects can be unacceptable in the very 
early phases of the bubble growth (Baumeister & Hamill 1969). However, we will not 
be concerned with these early times ( t  < lops s), especially since numerical experi- 
ments have shown that the later history is very little influenced by the value of the 
initial time at which the computation is started. The bubble-cloud behaviour is of 
interest when the ambient pressure P,(t) is time dependent. 

In order to determine the flow field in the bubbleliquid medium and to obtain 
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the motion and deformation of any bubble in the cloud one has to solve the Laplace 
equation for the velocity potential @, 

A@ = 0, (1) 

subjected to kinematic and dynamic conditions on the bubbles' surfaces. 
The equation of a bubble surface in a coordinate system moving with velocity 6i 

in the direction e,, is r = Ri(e,$, t ) .  V' and n* are respectively the local curvature of 
the surface of bubble B(*) and its normal unit vector a t  the point M(r,  8,#). y and TR 

are respectively the surface tension of the liquid and its temperature at the bubble 
wall. P, is the pressure of the vapour inside the bubble. The boundary conditions can 
then be written : 

v@*R' Ir-Rs(,j,#, t )  = [ f i e r  + @ e,] n', 

P [ ~ - - 6 i e , + t I v ~ I f R t ( e , c e , , t ~ l  = P,( t ) - - (TR)+2y*(T, )Vi (e ,  $ 9  t ) ,  

(2) 

(3) 

where @ and the operator V are expressed in the moving-coordinates system. Owing 
to the low value of the vapour density, pv, the pressure of the vapour inside the bubble 
can be assumed to be uniform as long as the spherical symmetry is preserved. In  this 
case, P, is equal to the value of the equilibrium vapour pressure of the liquid at the 
bubble-wall temperature. We will assume that when the bubble shape deviates 
moderately from a sphere both the temperature along the bubble well and the value 
of the vapour pressure vary accordingly. Under this assumption, the pressure P, may 
be uniform inside the bubble far from the bubble surface but accommodates itself 
to the temperature-controlled value in the vicinity of the interface. More details on 
the way this happens inside the bubble are not needed here since the flow field of 
the vapour is of no relevance as long as the velocities are subsonic. 

The value of the equilibrium vapour pressure P,(TR) and of the surface tension y( TR) 

constitute the coupling between the dynamic and the heat problems. To determine 
the temperature at the bubble wall TR(e,$,  t), one needs to solve the energy equation 

!P+V@*VT = DAT, (4) 

where D is the thermal diffusivity of the liquid. 
Equation (4) is subjected to a boundary condition on the bubble wall stating that 

the heat locally lost at any point of the interface is used to vaporize an amount of 
liquid determined by the local bubble-volume expansion rate. If pv is the vapour 
density, L is the latent heat of the liquid, and K its thermal conductivity, the 
heat-balance equation over the bubble surface can be written in spherical 
coordinates : 

This equation is satisfied if the following elementary equilibrium equation applies 
locally at the bubble surface : 

Equations (1)-(6) form, with the initial and at-infinity conditions (known T, and 
P,(t)), a complete set of equations which must be solved to determine the flow and 
temperature fields. 
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2.2.  Asymptotic approach 
The solution of the general problem as presented above is not a t  present conceivable. 
However, when the bubbles’ characteristic radius ?bo is small compared to the 
characteristic distance between two bubbles I, an approximate solution can be sought. 
For such a low-void-fraction cloud, we can assume that bubble interactions are 
weak enough so that, t o  the first order of approximation and in the absence of relative 
velocity with the surrounding fluid, each of the individual bubbles reacts to the local 
pressure variations spherically, as if isolated. Thus, to  first order, after being 
subjected to  an ambient pressure drop, the cluster behaves as a distribution of flow 
sources and heat sinks. Mutual bubble interactions, individual bubble motions and 
deformations come into play at the following orders of approximation and introduce 
higher-order singularities. 

The solution of the problem is sought in terms of matched asymptotic expansions 
in powers of e, the ratio between rbo and I , .  Two regions of the fluid are defined for 
each individual bubble of the cloud. The ‘outer region’ is that considered when the 
reference length is chosen to  be 1,. The corresponding ‘outer problem’ is concerned 
with the macro-behaviour of the cloud, and the bubbles appear in it only as 
singularities. The ‘inner region’ is that  considered when the lengthscale is rho. The 
solution of the corresponding ‘inner problem’ applies to the microscale of the cloud, 
i.e. to  the vicinity of an individual bubble of centre B,. The presence of the other 
bubbles, all considered to be at infinity for the ‘inner problem’, is sensed, at each 
order of approximation, by the asymptotic behaviour of the outer solution in the 
vicinity of Bi. Thus, to each order of approximation the ‘inner problem’ reduces to 
the study of an isolated bubble with conditions imposed at infinity determined a t  
the preceding orders. These conditions are obtained as the expansions of the preceding 
orders’ ‘outer solution’ near the bubble singularity and by application of the 
matching principle. The process is started by the first-order approximation, whose 
solution is known since all bubbles then behave as if isolated. 

2.3. Normalizations 
I n  order to generate asymptotic expansions (and thus to  compare orders of mag- 
nitudes) an accurate choice of characteristic scale variables is fundamental. For the 
lengthscales the choice is immediate: rbo in the inner problem, 1, in the outer. How- 
ever, the relationship between rbo and the characteristic initial bubble radius R, is 
not obvious. Indeed, while, in the case of bubble collapse, the bubble radius stays of 
order R, in the mathematical sense (R(e) = O(R,) if there exists a constant A 
independent of e such that IRJ < hl R,I ), this is not the case for the bubble-cloud 
growth studied here. Therefore rb0 is chosen arbitrarily to be much larger than R, 
but such that the inequality 

rbo/lo = 6 < 1 (7) 

is valid. Consequently, the results of the computations will be valid only as long as 
the radius of any bubble in the cloud does not greatly exceed rho. 

Concerning the timescale, the choice is simple once rbo is known. I n  the case of a 
significant pressure drop, as for the problem of sudden depressurization in a 
loss-of-coolant accident, this timescale is related to the pressure drop A P ,  through 
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AP could also be the order of magnitude of the imposed pressure fluctuations when 
P,(t) is a prescribed function of time. 

As mentioned earlier, in both 'inner' and 'outer' regions, the flow in the first 
approximation is that due to a distribution of dynamic sources and heat sinks. The 
characteristic strength of the dynamic sources is qo = 3,/7,,, and, depending on 
whether one considers the 'inner' or the 'outer' problem, the resulting velocity 
potential @ has the scales: 

(9) 

Since the maximum temperature drop occurs near the bubble wall, and since a lower 
bound for this temperature is the boiling temperature of the liquid Tb, at the imposed 
ambient pressure P,, the temperature departure from T ,  is scaled with the amount 
of superheat (Tm - Tb). 

With these characteristic scales, non-dimensional variables, all of order unity, are 
introduced through the following definitions, where bars denote outer non-dimensional 
variables and tildes inner ones: 

Each of the unknowns X is then expanded in power series of E as follows: 

x = xo + EX1 + €2X2 + €3X, + O(e3). (11) 

3. Singular perturbation approach 
3.1. First order of approximations (e0) 

When e is zero, the distance between bubbles is infinity, interactions vanish, and, in 
the absence of a slip velocity between the test bubble and the surrounding fluid, the 
only boundary condition at infinity is the imposed ambient pressure variation P,(t). 
The 'inner problem' is therefore spherically symmetrical and its solution is given by 
the well-known Rayleigh-Plesset equation. This can be written with the superscript 
(i) omitted for convenience : 

2 w-1 

a0 
dOiO+@ = - F m ( t ) + n o ( t ) - + -  y " ( t ) - 8 .  

The non-dimensional parameters are defined by the relations : 

y ( t )  and p,(t) are, respectively, the surface-tension coefficient and the liquid vapour 
pressure at the bubble-wall temperature at time t .  The initial equilibrium condition 
at the bubble interface is 

= 0. 8+- 
2 w;1 

RO 
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For a given P,(t), (12) can be solved for the variations of the bubble radius, g(t). 
This allows the subsequent determination of the higher-order approximations of the 
bubble radius. 

When the temperature at the surface of the bubble departs significantly from the 
ambient temperature, it is necessary to couple (12) with the energy equation to 
account for the dependence of p ,  and y on temperature. At  this order, the problem 
is spherically symmetrical, and the energy equation (4) reduces to the following 
non-dimensional equation : 

where the P6clet number P, is the ratio of the thermal diffusion time rEo/D to the 
bubble characteristic time 7,, 

P, = rb0/D7,. (16) 

The heat balance on the bubbleliquid interface reduces at this order of approximation 
to the following normalized equation : 

3.2. Interactions 
3.2.1. Order 8 

In  the asymptotic theory presented here, the local pressures and temperatures 
driving the growth of any bubble Bca) are a perturbation of the imposed far-field 
pressure P,(t) and temperature T,. Since these perturbations are due to the 
presence of the other bubbles in the flow field, the leading terms can be obtained 
directly once the first-order behaviour of all the bubbles in the cloud is determined. 
For instance, once (12), (15), and (17) are solved, the variation with time of the radius, 
ai(t), of any cavity in the cloud can be determined. This allows the determination 
of the intensity of all sources & t ) :  

%(t )  = gig. (18) 

Consequently, the resultant ‘outer ’ potential flow is determined to this order by 

where M is a field point, and B5 the centre of the bubble B”), and also the location 
of the source (j). The asymptotic expansions of $ , (M, t ) ,  when the normalized 
distance lMBl I = €9 goes to zero, contain additional terms other than the leading 
source term, #-,/$, corresponding to the order-zero ‘inner’ potential flow, 

6; = &(t)/9. (20) 

These terms express the interactions and are responsible for the flow and bubble-shape 
corrections. For instance, by application of the matching principle ( n m  rule, Van 
Dyke 1964), the order-s term will determine the boundary condition at  infinity for 
the order-s ‘inner’ velocity potential, i.e. 

where l t j  is the initial distance between the two cavities’ centres @ and B3 
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In addition to the at-infinity boundary condition (21) the first correction, @, of 
the undisturbed potential flow @ has to satisfy the Laplace equation (l) ,  as well 
as boundary conditions on the surface of the bubble B($). These are the contributions 
to order E of the expansions in powers of E of conditions (2) and (3) made 
dimensionless. Similarly, the first correction, T,, of To has to satisfy the equations 
derived from (4) and (6). 

Owing to condition (21) the dynamic problem remains spherical. To this order the 
effect of the other bubbles does not introduce any asymmetries, and only changes 
the level of the velocity potential. Therefore the correction at this order stems from 
a modification in the ' inner ' problem of the pressure imposed at infinity by the time 
derivative of the added at-infinity velocity potential (21). As a result, the solution 
of the dynamic problem at order E is again given by a source term which corrects 
the leading term &;. This solution can be written: 

where the source intensity, @, is given by 

g; = 6$q+26@3;. 

In  order to  satisfy the boundary conditions a t  the bubble surface, the first correction, 
.",, of the bubble radius has to satisfy the following differential equation, where the 
superscript i has been omitted : 

nl( t )  is a correction of nO(t) and expresses the second approximation of the value of 
the vapour pressure at the bubble wall. Using the expansions of the temperature in 
powers of E as in (11), no(t) and nl( t )  can be expressed as 

For the study of the heat problem it is useful to introduce the following variable 
(again omitting the superscripts i) : 

= +[r" - R3(e, t ) ] ,  (27 1 
by analogy with the spherical-bubble case (Prosperetti & Plesset 1978). With this 
variable change, the normalized energy equation can be written : 

After replacing r" by its value derived from (27), and accounting for the expansions 
of R(0, t ) ,  we obtain, at the orders 6 and E ,  the relations 
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and 

where 7 = (G;+3y)i. (31) 

Similarly, the heat-balance condition on the bubble wall becomes at order so 
and E :  

and (33) 

3.2.2. Higher orders 
Continuing the same procedure as in the preceding section, one can derive the 

successive equations for the flow field, the temperature field and the bubble motion. 
The solution of the problem is made easier by the use of series expansions of the 
velocity potential in spherical harmonics, and of the bubble-surface equation and the 
temperature field in Legendre polynomials, Pn(cos 0). The boundary condition at  
infinity for any particular 'inner' problem (i), obtained by expanding the expression 
of $ near Bi (Chahine & Bovis 1983; Chahine 1982) can then be shown to be up to 
order e3:  

gn is the correction at  order en of g ,  the strength of the source representing the 
first-approximation spherical volume change of the bubble B(n, and 

A, = (zo/z;j). (35) 

The superscript j denotes quantities corresponding to the other bubbles, B(n, and 82, 
is the angle MBB* between P, Bj, and a field point in the fluid M (see figure 1).  

Expressed in physical terms (velocities, pressures) the boundary condition (34) 
indicates that the order-e correction to the non-perturbed spherical flow field around 
the test bubble is a spherical modification of the collapse driving pressure. This 
introduces, as we have seen in the preceding section, a spherical correction g(t) to 
the radius variations@( t ) .  At the following order e2 a second correction of the at-infinity 
uniform pressure appears, and a uniform velocity field expressing a slip velocity 
between the bubble and the surrounding fluid is to  be added. Going through the 
expansions of the boundary conditions at the bubble surface, one can show that this 
induces a spherical correction, ai(t) ,  of a;(t), and a non-spherical correctionfi(t) cos Otg  

(Chahine & Bovis 1983; Chahine 1982). Oig is an angle which can be compounded from 
all the @*'s (see $3.3). Things become more complex at the order of expansion e3 where, 
in addition to the uniform pressure and velocity corrections, a velocity gradient 
generated by the flow field associated with the motion of all the other bubbles, is to 
be accounted for to generate a non-spherical correction of form P2(cos @). 

Following from the above remarks on the at-infinity boundary condition, one can 
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Lower minor 

FIQURE 1.  Multibubble interaction equivalence concept. 

show that the equation of the surface of the bubble B(t) and the temperature can be 
written as : 

T(r,  @, t )  = To(r, t )  +eTl(r, t )  +e2[Tao(r, t )  + Tzl(r, t )  cos e i g ]  

provided that the initial bubble shape is spherical (Chahine 1982; Chahine & Liu 
1983). Therefore, up to the order e3 each inner problem is axisymmetric, and the axis 
of symmetry for every bubble is in the direction, BdG, of its motion towards the bubble- 
cloud 'centre' (se? $3.3). 

We introduce d ,  defined as the sum of the deformation rate of form cos 8, j,, and 
of the origin of axis translation velocity, 6, : 

4 L  

dn = j n + S , .  (38) 



';(fit:+!?) = k 

8ysn u~~!.IM aq us3 23 JapJo qo suo!qsnba d8m.m ay~, 
*( ~g) 'amqwadmq ayq 30 suorsusdxa ayq u! pasn asoyq 0% 

puodsamoo tu 'u saapu! aq~, -anp p!q!u! sq! pus aury llus qe arnssad modsa aqq 
uaaMqaq aoua~agp Iouo!suam!p-uou ayq 30 suo!qsmyxoadds Jap.ro-Jay8q ars (?)wuuu 
-(pz) pus (ZJ) suo!qonba Is!quaaag!p aqq BU!A~OS Sq s~rap~o 8uypaoaJd ayq qs paupqqo 
aw (1)'g pus ($)Op pus 'paqquro uaaq ssy qdposmdns ayq 'suorqsnba aaoqs ayq UI 
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this equivalent bubble should induce the same pressures and velocities as defined by 
(34), its characteristics are obtained by the equations 

where e,, and etj are respectively unit vectors of the directions @@ and BiBi 
(figure l),  and n is the order of approximation. These equations define the angle @g, 

and the direction in which $( t )  is measured ((38) and (40)). 

4. Numerical resolution 
4.1. General solution 

The system of equations derived up to order e3 constitute a set of 14 equations for 
the 14 unknown components of @(O, t ) ,  and P(0, t )  ((36) and (37)). By solving this 
system one determines completely the flow and temperature fields as well as the 
bubble motion and deformation. A numerical solution of these equations is feasible 
and could be performed using the same procedure as Dalle Donne & Ferranti (1975). 
Their study dealt with a single-bubble growth and thus solved only equations (12), 
(15), and (17). Here the same approach would have to be performed for all seven 
components of the bubble radius (up to e3).  

Since the equations are not independent, the procedure would start by determining 
at a given time step the temperature at the lowest order of approximation (eo) and 
the corresponding radius approximation. Knowing this, one can compute the 
successive temperature corrections, and the successive radius corrections. A t  each 
time step an iteration process would be used to insure a good correspondence between 
the obtained temperature and radius values. Stepping in time of the computation 
could be obtained with a Runge-Kutta procedure which solves each differential 
equation yielding the bubble-radius values. The determination of the temperature 
field is more elaborate and requires a stepping both in time and in space. This latter 
involves writing a finite-difference scheme and replacing the integration field with 
a grid of mesh points. This general solution is not developed here ; we considered 
instead the cases where large initial superheats make a thermal-boundary-layer 
approximation valid. 

4.2. Themnal-boundary-layer approximation 
If the distance 6 in which the temperature rises from its value at the bubble wall to 
approximately the imposed ambient temperature T ,  is small compared with the 
bubble radius R, an approximate solution can be obtained more easily than with 
the method described in the preceding paragraph. By considering heat diffusion 
in the liquid, spherical bubble growth rate and heat balance at the bubble-liquid 
interface, Plesset & Prosperetti (1977) estimate SIR by 

Thus a boundary-layer approximation is valid as long as the Jacob number J is much 
larger than one. For a spherical bubble, comparisons between numerical computations 
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obtained using this approximation and those obtained by solving the exact equations 
gave very close agreement for J 2 3 (Prosperetti & Plesset 1978; Plesset 1980). 

When the boundary-layer approximation is used, the system of heat equations 
presented above simplifies considerably. Indeed, in that case the temperature 
departs from T, only in the liquid region close to  the bubble-liquid interface, and 
the values of r which are of interest are close to  R(0, t ) .  The variable y defined in (27) 
is then small compared to 6:, and we can write 

Y = E&%, (49) 

where fj and 6, are of order 1, and is a small parameter [E  = O(J- l ) ] .  The problem 
considered then contains two small parameters e and 6, and an asymptotic solution 
uniformly valid when both E and 6 go to zero can be obtained when a relationship 
between the two parameters is defined through the use of the principle of least 
degeneracy (Darrozes 197 1 ) . 

Considering the heat equation (28) one can determine the relation needed between 
8 and 6 to conserve the maximum number of terms in the leading orders of 
approximation. In  order to  prevent the order-€, expansion (29) from degenerating 
when 5 goes to zero, the P6clet number has to  be large enough to  satisfy 

Pe = O(E-’)), (50) 

in which case both terms of the equation are conserved. Similarly, to conserve the 
maximum terms a t  the following-order E one needs to keep together the leading terms 
coming from the expansions in powers of E and those from expansions in powers of 
6 (e.g. in the expansions of r4). This ‘least degeneracy’ is obtained when 

E = O(E). (51) 

Using the relationships (50) and (51) between Pe, 6, and E ,  the expansions become 
straightforward. 

The equations obtained at the first-order expansion in both parameters (orders so 
and 6,) are those for the case of an  isolated bubble. A solution is readily available 
in that case and was derived by Plesset & Zwick (1952) and Forster & Zuber (1954) 
using Laplace-transform methods. The non-dimensional temperature a t  the bubble 
wall is given by: 

where, to be consistent with the assumptions made in deriving this solution, D and 
K are constant and evaluated a t  Tb while L and pv are functions of time. The 
numerical procedure is greatly simplified now that an analytical expression for the 
temperature a t  the bubble wall is known. The finite-element method which would 
have been used in the general case is here replaced by a numerical computation of 
the integral equation (52). An iteration procedure is required to  insure that the 
computed value of 5?,(G,, t) does not differ significantly from the value presumed in 
the computation of the integrand. 

Plesset & Zwick (1952) also gave the solution of the problem when (52) contains 
a right-hand side which is a known function of time (heat-source term). Using a 
matched asymptotic procedure they also computed the following order of approxi- 
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N 

1 0 0 0 
2 1 1 1 
3 2 1.732 1.25 
5 3 2 1 

12 8.616 4.53 0.41 

TABLE 1. Values of the numerical constants used in the computations 

mation O(6).  These solutions correspond to the following-orders equations in powers 
of 6 and 6 for the multi-bubble problem. For simplicity these equations will not be 
listed here. 

5. Numerical illustration of the method 
5.1. Particular cases studied 

In  order to illustrate the method presented above we consider numerical solutions 
for a cloud of simple geometry. The bubbles are distributed in a symmetrical 
configuration and are initially of equal size. With this configuration all bubbles have 
the same radius history, and the computation time is significantly reduced since no 
repeated computations for the various bubbles are needed. The computation is 
further simplified by the fact that all summations in the dynamic equations (24), (39), 
and (40) reduce to multiplications of the characteristics of a single bubble by one of 
the following three constants which depend only on the initial geometrical configu- 
ration of the cloud: 

I 

The values of c l ,  c2 and c3 for the numerical computation presented below are listed 
in table 1. 

An additional simplification of the numerical solution can be introduced if one 
notices that during the bubble growth the departure from the initial spherical shape 
happens very late in the bubble history and only when the asymptotic approach starts 
losing its validity. This is not true for the cloud collapse (Chahine 1982). Figure 2 
shows the variation with time of the major radius of an individual bubble in a cloud 
configuration of N bubbles symmetrically located on a sphere. For this figure, heat 
transfer has been neglected. We observe, for the isolated bubble, the well-known 
asymptotic linear growth behaviour. However, when the number of interacting 
bubbles increases, the pressure field associated with the dynamics of the other bubbles 
in the cloud reduces the growth rate of the test bubble. This deviation increases with 
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FIGURE 
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FIGURE 3. Ratio of non-spherical to spherical component of the radius ver9u.s time for a bubble 

growing in an N-bubble cloud. We = 100, R, = O.OOO1 m, 8 = 0.1. 

the number of bubbles N until, for N = 12 for the case studied, the method apparently 
fails for t > 0.1. The radius corrections (illustrated in the figure by the amount of 
deviation of the radius in an N-bubble case from the isolated-bubble case) become 
large compared with the order-zero radius. Figure 3 shows, for the same bubble 
configuration, the ratio of the non-spherical to the spherical part of R(8, t )  in the 
expansion (36). I n  all cases but the obvious one where the method breaks down, the 
relative deformations remain less than 4 % while the bubble radius is 2000 times its - initial value. 
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Based on this observation and as a first step towards a more precise solution, we 
have neglected in the developed numerical program the contribution of non-sphericity 
to the heat-transfer problem. Therefore, the temperature field was approximated by 
a spherically symmetrical field. However, this field accounts for interactions and 
differs from that of the isolated-bubble case because of the contributions of the 
higher-order spherical terms of the bubble equation. Indeed (52), relating the bubble- 
wall temperature to a spherical-bubble-radius history, was applied to the spherical 
part of the bubble radius, i.e. to 

A(t) = &(t) + € ~ c i ; , ( t ) + € 2 ~ 2 ( t ) + € S a " 3 .  (54) 

With this simplification, at any time step all dynamical equations are solved using 
the value of the vapour pressure corresponding to the liquid temperature at the radial 
distance &t). This temperature is computed at the preceding time step using (52). 
The non-spherical part of the bubble shape is not disregarded and is computed 
neglecting variations of the liquid temperature along the bubble surface. This is valid 
as long as the bubble deformation is negligible. Since we restrict this study to that 
case, the validity of the results is checked by monitoring the relative value of the 
computed non-spherical to the spherical components of the bubble-surface equation. 
The computation is stopped when an imposed limit is exceeded. Accounting for the 
deformations is an important task which we will consider in the continuation of this 
study. 

5.2. Results and interpretation 
A series of numerical cases was studied using a VAX 11/750 computer. We have 
considered different variations of the number of bubbles and configuration, the 
ambient pressures, the initial bubble radius, and the amount of superheat. The 
duration of a typical run was about 10 minutes of CPU time (for 2000 time steps). 
The computation involves the resolution of the heat and dynamical equations for an 
N-bubble configuration, the study of the corresponding case of an isolated bubble 
with and without heat transfer, and the computation of pressure histories a t  three 
locations in the flow field. 

Figures 4-13 illustrate the results obtained on the influence of bubble interactions 
on the growth of a bubble in a superheated liquid that we will discuss below. In  all 
figures, the curves are stopped when the computations become invalid owing to large 
bubble interactions. Figure 4 shows clearly the influence of interactions on the 
bubble-radius history. Since the bubble does not remain spherical, the value of R(@) 
represented in this figure corresponds to the point on the bubble closest to the cloud 
centre, the 'lower-minor radius' (see figure 1). The classical results of asymptotic 
growth in t for the inertia-controlled bubble expansion and in to for the heat-controlled 
bubble expansion can be seen. If there was no pressure drop a would be t. However, 
here a is much closer to 1, as obtained by earlier studies on single bubbles (Jones & 
Zuber 1978; Theofanous et al. 1969; Cha & Henry 1981). The most important result 
obtained here is that bubble growth is inhibited by bubble interactions. Very clearly 
at a given time the bubble size decreases with the number of interacting bubbles. This 
decrease exceeds 20 % for a 5-bubble system for non-dimensional times larger than 10, 
or one millisecond after the start of the growth (see figure 4). 

Figure 5 shows the effect of bubble interactions on the liquid temperature at the 
bubble wall. The presence of other growing bubbles in the field is seen to reduce the 
heat transfer at the bubble wall and thus the temperature drop in its vicinity. For 
example, for a 5-bubble system the deviation from the isolated-bubble case of the- 
temperature drop is more than 30' one millisecond after the initial pressure drop. This 
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FIGURE 4. Influence of interactions on bubble growth in a superheated-liquid. Bubble-radius 
history: Po = 2 atm, Pinr = 0.5 atm, E = 0.05, R,, = 0.01 m, R, = 2.5 x lop5 m, Tb = 809.3 "C, 
Tinr = 1177.71 "C, liquid sodium. 
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FIGURE 5. Influence of interactions on the temperature variations at the wall of a bubble in an 
N-bubble cloud, Po = 2 atm, Pinr = 0.5 atm, E = 0.05, R,, = 0.01 m, R, = 2.5 x lop6 m, 
Tb = 809.3 "C, Tinf = 1177.7 "C, liquid sodium. 

result, coupled with that obtained for the variations of the bubble radius, is important 
for any practical computation of heat transfer in a two-phase medium. 

Figure 6 shows the modification of the bubble shape during its growth for the same 
N-bubble systems shown in figures 4 and 5.  The bubble shapes at two instants during 
the growth process are represented. As expected, in the presence of an N-bubble cloud, 
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FIGURE 6. Variation with time of bubble shape characteristics at two selected times, Po = 2 atm, 
Pinr = 0.5 atm, E = 0.05, Rbo = 0.01 m, R, = 2.5 x m, Tb = 809.3 "C, Tint = 1177.71 "C, liquid 
sodium. 

the side of the bubble facing the cloud centre is seen to be slightly 'pushed away' 
from the cloud centre and the bubble is seen to elongate in a direction tangential to 
the sphere. However, any point on its surface always remains inside the corresponding 
fictitious isolated bubble growing under the same conditions. The deformation 
decreases as the number of interacting bubbles increases. 

Figures 7 and 8 show the influence of the amount of pressure drop and initial 
superheat on the bubble growth. These figures consider an isolated bubble as well 
as a 5-bubble system. The same remarks made in the preceding paragraphs apply 
here when the influence of the number of bubbles is considered. In all cases the initial 
bubble radius is the same, and the pressure drops to the same value. However, since 
the initial pressures vary from one case to another and since all bubbles are considered 
to be initially at equilibrium, the initial temperature and thus the initial amount of 
superheat varies from one case to another. To isolate the two effects one has to 
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FIGURE 7. Influence of interactions and initial conditions on bubble growth in a superheated liquid, 
Pinr = 1 atm, E = 0.4, R,, = 0.01 m, R, = 2.5 x m, Tb = 879.9 "C: A, Po = 5 atm, 
T,,, = 1224.9 "C; B, 3 atm, 1194.9 "C; C, 2 atm, 1177.7 "C; D, 1 atm, 1159.9 "C. 
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FIGURE 8. Influence of interactions and initial conditions on bubble growth rate in a superheated 
liquid, P,, ,=latm, e = 0 . 4 ,  Rb,=O.O1m, R , = 2 . 5 ~ 1 0 - ~ r n ,  Tb=879.9"C: A, Po=2atm,  
Tinr = 1177.7 "C; B, 3 atm, 1194.4 "C; C, 5 atm, 1224.9 "C. 

consider the case where the bubbles are not initially at equilibrium. Another option 
would be to have the same initial pressure, radius and temperature and to vary the 
value of Pinf. We consider this case below. Figures 7 and 8 show that the normalized 
bubble radii and growth rates are larger at  any given time when the amounts of 
pressure drop and superheat are greater. In the absence of heat transfer, scaling effects 
are mainly due to the differences in the Weber number We and the initial pressure 
parameter 8. When heat-transfer effects are included, there is an additional 
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FIQURE 9. Influence of the imposed pressure PiM on bubble growth in a superheated liquid, 
Po = 5 atm, R, = 0.01 m, Ro = 2.5 x m, B = 0.4, Tinr = 1224.9 "C: A, Tb = 879.9 "C, 
Gnr = 1 atm; B, 960.5 "C, 2 atm; C, 1013.3 "C, 3 atm. 
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FIGURE 10. Influence of imposed pressure Pin* on the bubble-wall temperature, Po = 5 atm, 

960.5 "C, 2 atm; C, 1013.3 "C, 3 atm. 
Rb,, = 0.01 m, RO = 2.5 X m, B = 0.4, qnr = 1224.9 "c: A, Tb = 879.9 "c, Pint = 1 atm; B, 

parameter, the Jacob number. These effects counterbalance each other in real time, 
and one observes a minor influence of the initial value of the pressure (for the same 
initial radius) when the radius variations are plotted with dimensional variables 
(Chahine & Liu 1983). 

A similar result is seen when, for the same initial bubble radius and liquid 
temperature, the ambient pressure drops from the same initial pressure to different 



276 G. L .  Chahine and H .  L. Liu 

10-8 10-7 10-6 10-5 10-4 10-3 
Time, s 

FIGURE 1 1 .  Influence of initial bubble size on radius history, Po = 2 atm, P,,,, = 1 atm, E = 0.2, 
R,, = 0.01 m, Tb = 879.9 "C, 5-bubble system with superheat: -, R, = 2.5E-6; ----,  2.5E-5; 

, l.OE-4; ---, l.OE-3. 
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FIGURE 12. Influence of initial bubble size and bubble interactions on radius history, Po = 2 atm, 
Pinf = 1 atm, E = 0.2, R,, = 0.01 m, T, = 879.9 "C: A,  Tinf = 1518.0 "C, R, = 2.5E-6; B, 
1177.7 "C, 2.5E-5; C, 1051.4 "C, 1.OE-4; D, 973.2 "C, l.OE-3. 

subsequent values. In this case the initial amount of superheat is the same for all 
the cases of pressure drop studied. However, the subsequent amounts of superheat 
differ from one case to another. The use of non-dimensional variables decreases (but 
does not cancel, because of nonlinearities) the influence of dynamic factors, but it 
does not alter thermal effects. The results (figure 9) show again a larger bubble radius 
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FIGURE 13. Influence of initial bubble size on bubble-wall-temperature history, Po = 2 atm, 
Gnr = 1 atm, E = 0.2, R,, = 0.01 m, Tb = 879.9 "C: A, R, = 2.5E-6; B, 2.5E-5; C, 1.OE-4; D, 
1 .OE - 3. 

during the growth period for higher pressure drops. The comparison with the 5-bubble 
case can also be observed and shows again the retarding effect on bubble growth due 
to collective bubble behaviour. Figure 10 completes the picture by showing the 
temperature drop at the bubble wall for the different cases studied. The same 
observations as those made above are repeated, namely higher temperature drops for 
smaller pressure drops or higher number of interacting bubbles. 

The last series of results elucidate the influence of the initial bubble size for given 
fixed pressure conditions. With the assumption that the bubble is initially at 
equilibrium, the modification of the initial bubble size also corresponds to a change 
of the amount of superheat. Figure 11 shows the predominance of the effect of the 
amount of superheat factor on the bubble growth ; initially smaller bubbles attain 
greater sizes because of larger amounts of superheat. This effect is, however, coupled 
with the nonlinearities of the dynamical equations which favour smaller initial bubble 
radii in the first phase of the growth. Figure 12 shows the same effect with non- 
dimensional variables and compares a 5-bubble system with the isolated-bubble 
case. One can notice that the inhibition effect due to bubble interactions is larger for 
smaller initial. bubbles or larger amounts of superheat. Finally, figure 13 describes 
the temperature drop at  the bubble wall for the same cases. 

6. Concluding remarks 
We have developed in this study a theory for the growth of a cloud of bubbles in 

a superheated liquid. To do so we have used the method of matched asymptotic 
expansions assuming a low void fraction (small ratio of bubble radius to interbubble 
distance). Numerical solutions were then obtained for symmetrical cloud configura- 
tions using a multi Runge-Kutta scheme to solve the dynamical equations and a 
thin-thermal-boundary integral solution for the energy equations. The results 
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obtained show that bubble interactions significantly influence bubble growth and 
heat transfer. The effects of this influence can be summarized as follows : 

(a) the growth rate of the bubble is reduced; 
(b) the radius of any bubble at a given time is smaller than would be found for an 

isolated bubble ; and 
(c) the temperature drop at  the bubble wall is smaller at any given time than would 

be found for an isolated bubble. 
These effects increase with the number of interacting bubbles as well as with the 

amount of superheat and pressure drop. These results, which were obtained using 
small-perturbation assumptions, are expected to remain valid and become more 
significant when the void fraction becomes larger. Accounting for these effects is 
important for increasing the accuracies of the existing transient two-phase flow codes. 

The study presented here could be improved by introducing a finite-speed wave 
propagation in the cloud and by accounting for the compressibility of the medium. 
The analytical equations derived for the general-bubble-configuration case (no 
symmetry or equal bubble size) could be expanded to a numerical approach in a 
relatively simple manner. The resolution of the problem could also be extended to 
low-superheat cases (small Jacob numbers) and to larger interactions and bubble 
deformations by numerically implementing the analytical approach presented above 
which was not used in the numerical examples. 

This work was partially supported by the Naval Sea Systems Command, General 
Hydrodynamics Program administered by the David Taylor Naval Ship Research 
and Development Center under Contract Number N00014-82-C-009 and by a 
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